Black Cumin

Black Cumin: The Miracle Herb You May Never Have Head About

What is one of the most potentially powerful herbs you can take for your health? It is so helpful that it has been called “miracle” and “healing” herb in history, going back to pre-Biblical times. It was found cached in King Tut’s tomb, for example. Among Muslims, it was mentioned in one of the Prophetic hadith as being able to cure all diseases except death and recommended for use on a regular basis in Prophetic Medicine (Tibb-e-Nabwi). It has been and still is widely used in the Indian Unani and Ayurveda traditional systems of medicine, along with different indigenous and folk medicines in many places around the world.

If you guessed Black Cumin, you are correct! A spice widely used in Indian and Middle Eastern cuisine that has a peppery flavor, Black cumin is not actually cumin, but Nigella sativa, or simply black seed. Traditional uses of it were for respiratory system maladies, diseases of the digestive tract, kidney, liver, cardiovascular and immune system and for general well-being. It was also widely used for hypertension, diuretics, digestive, anti-diarrheal, analgesics, anti-bacterial and in skin disorders.

Despite the renown of Black cumin for its therapeutic effects, it has only been clinically tested in the recent modern era. However, there are now over a thousand papers in medical literature on it. Some of these, too, include the word “miracle herb” in the title or text.

And the reviews of the testing and randomized controlled clinical trials do indeed bear out Black cumin’s potential for healing. They show that daily black cumin consumption can significantly improve cholesterol, triglycerides, blood pressure and blood sugar.

One study found that postmenopausal women taking less than a quarter teaspoon, (1 gram) a day, had reductions of LDL cholesterol of 27 percent on average after two months. These are results you might expect from a statin drug, without the side effects, expense and need to get a prescription.

Actually, the two main side effects that one does experience from regular consumption of Black cumin are something most would find quite positive: mitigation of excess appetite and weight loss! Black cumin does not actually “heal” from what the science show. The good effects from it appear to require sustained use of Black cumin. Cholesterol levels start to elevate again if use of the spice stops.

For potential help with weight loss, the latest systematic review and meta-analysis of randomized controlled weight loss trials has found that a quarter teaspoon of black cumin powder every day does appear to cause weight loss within a span of a few months.

The major therapeutic component of Black cumin appears to be due to the presence of thymoquinone (TQ), a major active chemical component of Black cumin essential oil. However, Black cumin also contains many other active compounds in varying amounts, some of which also seem to have positive therapeutic effects. Perhaps the most interesting of those is saponin, a potential anti-cancer agent.

Black cumin seeds also contain beta-carotene, which is converted into Vitamin A by the liver as well as beneficial unsaturated fatty acids, like linoleic acid and oleic acid. Other components of Black cumin have potent antioxidant properties. All of this points to the whole food version of Black cumin, as being of the most potential value to you and your health, not extracts of it that are commonly peddled.

Today, it seems there are countless “new” and “amazing” substances out there being promoted by the nutritional supplement industry. However, only a fraction of them have real and extensive clinical science backing their potential benefits for you.

Black cumin sits solidly in this latter category.

As part of our mission to only bring clinical science based nutritional products to our customers, Doctors Pick will soon be releasing our new anti-inflammation and antioxidant powerhouse formula of Whole Plant Organic Turmeric Ginger with Amla & Black Cumin. This special formula contains a full 400mg of Organic Black Cumin.

References:

Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535880/

A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed. 2013;3(5):337-52.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642442/

Nigella sativa (black seed) effects on plasma lipid concentrations in humans: A systematic review and meta-analysis of randomized placebo-controlled trials
https://iris.unito.it/retrieve/handle/2318/1562112/569262/Pharm-Res_manuscript_revised.pdf

A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure
https://pubmed.ncbi.nlm.nih.gov/27512971/

Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: A systematic review and meta-analysis
https://pubmed.ncbi.nlm.nih.gov/29154069/

Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus
https://www.academia.edu/26389929/Effect_of_Nigella_sativa_seeds_on_the_glycemic_control_of_patients_with_type_2_diabetes_mellitus

Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4387233/

A randomized controlled trial on hypolipidemic effects of Nigella Sativa seeds powder in menopausal women
https://pubmed.ncbi.nlm.nih.gov/24685020/

 

Leave a Reply

Your email address will not be published.

THE 15 TOP CLINICALLY STUDIED PROBIOTIC STRAINS IN DOCTORS PICK BROAD PRO

(References at bottom of page: Most studies cited here were conducted on humans; only a relatively few listed involve lab animals.)
Doctors Pick BROAD PRO brings the best science has to offer

References:

 

Lactobacillus Acidophilus
  1. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/probiotic-acidophilus
  2. https://www.ncbi.nlm.nih.gov/pubmed/8551535
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847857/
  4. https://www.ncbi.nlm.nih.gov/pubmed/23747589
  5. https://www.ncbi.nlm.nih.gov/pubmed/10067658
  6. https://www.journalofdairyscience.org/article/S0022-0302(10)00545-X/fulltext
  7. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)60601-7/fulltext

 

Lactobacillus Bulgaricus
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705123/
  2. https://www.ncbi.nlm.nih.gov/pubmed/21986509
  3. https://www.ncbi.nlm.nih.gov/pubmed/20487575
  4. https://www.ncbi.nlm.nih.gov/pubmed/22923109
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680912/
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475728/
  7. https://www.ncbi.nlm.nih.gov/pubmed/8432622
  8. https://www.ncbi.nlm.nih.gov/pubmed/10660098
  9. https://www.ncbi.nlm.nih.gov/pubmed/597607
  10. https://www.ncbi.nlm.nih.gov/pubmed/3564372

 

Lactobacillus Casei:
  1. https://www.ncbi.nlm.nih.gov/pubmed/26419583
  2. https://www.ncbi.nlm.nih.gov/pubmed/26689231
  3. https://www.ncbi.nlm.nih.gov/pubmed/24673738
  4. https://www.ncbi.nlm.nih.gov/pubmed/20838859
  5. https://www.ncbi.nlm.nih.gov/pubmed/21810608
  6. https://www.ncbi.nlm.nih.gov/pubmed/26672414
  7. https://www.ncbi.nlm.nih.gov/pubmed/22505595
  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743185/
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744000/
  10. https://www.ncbi.nlm.nih.gov/pubmed/23992486
  11. https://www.ncbi.nlm.nih.gov/pubmed/21329565
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858332/
  13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160870/#B55

 

Lactobacillus Fermentum:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670518/
  2. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.4214
  3. https://www.ncbi.nlm.nih.gov/pubmed/21218486
  4. https://www.sciencedirect.com/science/article/abs/pii/S0899900707000111?via%3Dihub
  5. https://www.ncbi.nlm.nih.gov/pubmed/27447674
  6. https://www.karger.com/Article/Abstract/328512
  7. https://bjsm.bmj.com/content/44/4/222

 

Lactobacillus Gasseri:

38. https://www.ncbi.nlm.nih.gov/pubmed/20216555

  1. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-lactobacillus-gasseri-sbt2055-in-fermented-milk-on-abdominal-adiposity-in-adults-in-a-randomised-controlled-trial/304E3E2EE11E0D3D4F5D85E7046118A1
  2. Kadooka Y et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomized controlled trial. Br J Nutr. 2013 Nov 14;110(9):1696-703.Epub 2013 Apr 25
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611107/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
  6. Miyoshi M et al. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice.Eur J Nutr. 2014;53(2):599-606. doi: 10.1007/s00394-013-0568-9. Epub 2013 Aug 6.
  7. https://link.springer.com/article/10.1007%2Fs00203-015-1101-8
  8. https://www.wageningenacademic.com/doi/10.3920/BM2014.0108

 

Lactobacillus Plantarum:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594053/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419998/
  3. https://www.researchgate.net/publication/304663353_Immunomodulatory_Effects_of_Lactobacillus_plantarum_Lp62_on_Intestinal_Epithelial_and_Mononuclear_Cells
  4. https://www.ncbi.nlm.nih.gov/pubmed/25598393
  5. https://www.ncbi.nlm.nih.gov/pubmed/26620542
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882673/
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936756/

 

Lactobacillus Reuteri:
  1. https://www.nature.com/articles/ejcn2012126
  2. https://www.ncbi.nlm.nih.gov/pubmed/22067612
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917019/
  4. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1348-0421.2009.00154.x
  5. https://www.ncbi.nlm.nih.gov/pubmed/25688886
  6. https://www.nature.com/articles/ejcn2012126
  7. https://www.ncbi.nlm.nih.gov/pubmed/25531996
  8. https://www.ncbi.nlm.nih.gov/pubmed/15629974
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813596/
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219330/
  11. https://www.omicsonline.org/open-access/beneficial-bacteria-stimulate-youthful-thyroid-gland-activity-2165-7904.1000220.php?aid=26919
  12. https://www.ncbi.nlm.nih.gov/pubmed/19895848

 

Lactobacillus Rhamnosus:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155824/
  2. https://www.ncbi.nlm.nih.gov/pubmed/24299712
  1. https://www.ncbi.nlm.nih.gov/pubmed/26365389
  2. https://www.ncbi.nlm.nih.gov/pubmed/21899584
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844131/
  4. https://www.ncbi.nlm.nih.gov/pubmed/22692023
  5. https://www.ncbi.nlm.nih.gov/pubmed/22552453
  6. https://www.ncbi.nlm.nih.gov/pubmed/27596801
  7. https://www.ncbi.nlm.nih.gov/pubmed/23957340
  8. https://www.ncbi.nlm.nih.gov/pubmed/22702506
  9. https://www.ncbi.nlm.nih.gov/pubmed/26142892
  10. https://www.ncbi.nlm.nih.gov/pubmed/23740456

 

Bifidobacterium Breve:
  1. https://www.ncbi.nlm.nih.gov/pubmed/15491374
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720633/
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048518/
  2. https://www.ncbi.nlm.nih.gov/pubmed/12598719
  3. https://www.ncbi.nlm.nih.gov/pubmed/16819382
  1. https://www.ncbi.nlm.nih.gov/pubmed/27590263
  2. https://www.ncbi.nlm.nih.gov/pubmed/15269618
  3. https://academic.oup.com/ajcn/article/93/1/81/4597712
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084046/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034291/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965514/

 

Bifidobacterium Coagulans:
  1. https://www.ncbi.nlm.nih.gov/pubmed/25079465
  2. https://www.ncbi.nlm.nih.gov/pubmed/24271261
  3. https://www.ncbi.nlm.nih.gov/pubmed/2079358
  4. https://www.ncbi.nlm.nih.gov/pubmed/2086441
  5. https://www.ncbi.nlm.nih.gov/pubmed/23786900
  6. https://www.ncbi.nlm.nih.gov/pubmed/26430929
  7. https://www.ncbi.nlm.nih.gov/pubmed/24706266
  8. https://www.ncbi.nlm.nih.gov/pubmed/25196301
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826289/
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947834/
  2. https://www.ncbi.nlm.nih.gov/pubmed/25219857
  3. https://academic.oup.com/jn/article/145/7/1446/4589930
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784472/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285933/
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443394/
  7. https://www.tandfonline.com/doi/full/10.1080/09168451.2014.972331
  8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724383/
  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769834/
  10. https://www.ncbi.nlm.nih.gov/pubmed/20140275
  11. https://www.ncbi.nlm.nih.gov/pubmed/19332970
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129566/
  13. https://www.ncbi.nlm.nih.gov/pubmed/24867512
  14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460128/

 

Bifidobacterium infantis:
  1. https://www.nature.com/articles/pr2004591
  2. https://academic.oup.com/femspd/article/66/3/353/577227
  3. https://www.ncbi.nlm.nih.gov/pubmed/23192454
  1. https://www.ncbi.nlm.nih.gov/pubmed/20460726
  2. https://www.ncbi.nlm.nih.gov/pubmed/17189085
  3. https://gut.bmj.com/content/61/3/354
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774839/
  4. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0#tab2
  5. https://www.ncbi.nlm.nih.gov/pubmed/17893165
  6. https://www.ncbi.nlm.nih.gov/pubmed/19291170
  7. https://academic.oup.com/femspd/article/55/3/324/496928
  8. https://www.ncbi.nlm.nih.gov/pubmed/17259812
  9. https://www.ncbi.nlm.nih.gov/pubmed/16689181
  10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997396/
  11. https://www.ncbi.nlm.nih.gov/pubmed/19367213
  12. https://www.ncbi.nlm.nih.gov/pubmed/16863564
  13. https://www.ncbi.nlm.nih.gov/pubmed/26418574
  14. https://www.ncbi.nlm.nih.gov/pubmed/25794930

 

Bifidobacterium Lactis (Note: was called “Bifidobacterium animalis in older studies”):
  1. https://www.sciencedirect.com/science/article/abs/pii/S089990071500461X?via%3Dihub
  2. https://www.nature.com/articles/pr2008218?proof=true&draft=journal
  3. https://www.ncbi.nlm.nih.gov/pubmed/18801055
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265429/
  5. https://www.ncbi.nlm.nih.gov/pubmed/16794305
  6. https://www.ncbi.nlm.nih.gov/pubmed/19236549
  7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171707/
  8. https://www.ncbi.nlm.nih.gov/pubmed/26268077
  9. https://www.ncbi.nlm.nih.gov/pubmed/19622191
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877827/
  2. https://www.ncbi.nlm.nih.gov/pubmed/15076628
  3. https://www.ncbi.nlm.nih.gov/pubmed/25599772
  4. https://www.ncbi.nlm.nih.gov/pubmed/15815206
  5. https://www.ncbi.nlm.nih.gov/pubmed/24322191
  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761588/
  7. https://www.ncbi.nlm.nih.gov/pubmed/22284965
  8. https://www.ncbi.nlm.nih.gov/pubmed/17635382
  9. https://www.ncbi.nlm.nih.gov/pubmed/18801055

 

Bifidobacterium Longum:

151.https://www.ncbi.nlm.nih.gov/pubmed/15347767

  1. https://www.ncbi.nlm.nih.gov/pubmed/23192454
  2. https://academic.oup.com/femspd/article/66/3/353/577227
  3. https://www.ncbi.nlm.nih.gov/pubmed/22052061
  4. https://www.ncbi.nlm.nih.gov/pubmed/20460726
  5. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0
  6. https://www.ncbi.nlm.nih.gov/pubmed/19291170
  7. https://www.ncbi.nlm.nih.gov/pubmed/17259812
  8. https://www.ncbi.nlm.nih.gov/pubmed/24774670
  9. https://www.ncbi.nlm.nih.gov/pubmed/12906063
  10. https://www.ncbi.nlm.nih.gov/pubmed/16863564
  11. https://www.ncbi.nlm.nih.gov/pubmed/19367213

 

Saccharomyces Boulardii:
  1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296087/
  2. https://www.ncbi.nlm.nih.gov/pubmed/25653151
  3. https://www.ncbi.nlm.nih.gov/pubmed/15858959
  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125647/
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829915/
  6. https://www.ncbi.nlm.nih.gov/pubmed/21997865
  7. https://www.ncbi.nlm.nih.gov/pubmed/18256417
  8. https://www.ncbi.nlm.nih.gov/pubmed/17306006
  9. https://www.ncbi.nlm.nih.gov/pubmed/27283364
  10. https://www.ncbi.nlm.nih.gov/pubmed/22476321
  11. https://www.ncbi.nlm.nih.gov/pubmed/22335323
  12. https://www.ncbi.nlm.nih.gov/pubmed/26216624
  13. https://www.ncbi.nlm.nih.gov/pubmed/7872284
  14. https://www.ncbi.nlm.nih.gov/pubmed/24311316
  15. https://www.ncbi.nlm.nih.gov/pubmed/15740542
  1. https://www.ncbi.nlm.nih.gov/pubmed/16572062
  2. https://www.ncbi.nlm.nih.gov/pubmed/15357564
  3. https://www.ncbi.nlm.nih.gov/pubmed/2494098
  4. https://www.ncbi.nlm.nih.gov/pubmed/7872284
  1. https://www.ncbi.nlm.nih.gov/pubmed/7872284

 

Streptococcus Thermophilus:
  1. https://www.ncbi.nlm.nih.gov/pubmed/14627358
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034325/
  3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526857/

 

Clinical Trial References for FEM PRO Formulation

At Doctors Pick, we only formulate nutritional products based on solid clinical evidence of potential benefits to you. Below is a list of the clinical trials, almost all on human participants, used as the basis for formulating FEM PRO.

References

Lactobacillus Acidophilus
1. https://www.cancer.gov/publications/dictionaries/cancer-drug/def/probiotic-acidophilus
2. https://www.ncbi.nlm.nih.gov/pubmed/8551535
3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4847857/
4. https://www.ncbi.nlm.nih.gov/pubmed/23747589
5. https://www.ncbi.nlm.nih.gov/pubmed/10067658
6. https://www.journalofdairyscience.org/article/S0022-0302(10)00545-X/fulltext
7. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)60601-7/fulltext

Lactobacillus Bulgaricus
8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705123/
9. https://www.ncbi.nlm.nih.gov/pubmed/21986509
10. https://www.ncbi.nlm.nih.gov/pubmed/20487575
11. https://www.ncbi.nlm.nih.gov/pubmed/22923109
12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680912/
13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475728/
14. https://www.ncbi.nlm.nih.gov/pubmed/8432622
15. https://www.ncbi.nlm.nih.gov/pubmed/10660098
16. https://www.ncbi.nlm.nih.gov/pubmed/597607
17. https://www.ncbi.nlm.nih.gov/pubmed/3564372

Lactobacillus Casei:
18. https://www.ncbi.nlm.nih.gov/pubmed/26419583
19. https://www.ncbi.nlm.nih.gov/pubmed/26689231
20. https://www.ncbi.nlm.nih.gov/pubmed/24673738
21. https://www.ncbi.nlm.nih.gov/pubmed/20838859
22. https://www.ncbi.nlm.nih.gov/pubmed/21810608
23. https://www.ncbi.nlm.nih.gov/pubmed/26672414
24. https://www.ncbi.nlm.nih.gov/pubmed/22505595
25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3743185/
26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744000/
26. https://www.ncbi.nlm.nih.gov/pubmed/23992486
28. https://www.ncbi.nlm.nih.gov/pubmed/21329565
29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858332/
30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6160870/#B55

Lactobacillus Fermentum:
31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670518/
32. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.4214
33. https://www.ncbi.nlm.nih.gov/pubmed/21218486
34. https://www.sciencedirect.com/science/article/abs/pii/S0899900707000111?via%3Dihub
35. https://www.ncbi.nlm.nih.gov/pubmed/27447674
36. https://www.karger.com/Article/Abstract/328512
37. https://bjsm.bmj.com/content/44/4/222

Lactobacillus Gasseri:
38. https://www.ncbi.nlm.nih.gov/pubmed/20216555
39. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effect-of-lactobacillus-gasseri-sbt2055-in-fermented-milk-on-abdominal-adiposity-in-adults-in-a-randomised-controlled-trial/304E3E2EE11E0D3D4F5D85E7046118A1
40. Kadooka Y et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomized controlled trial. Br J Nutr. 2013 Nov 14;110(9):1696-703.Epub 2013 Apr 25
41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
42. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3611107/
43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391304/
44. Miyoshi M et al. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice.Eur J Nutr. 2014;53(2):599-606. doi: 10.1007/s00394-013-0568-9. Epub 2013 Aug 6.
45. https://link.springer.com/article/10.1007%2Fs00203-015-1101-8
46. https://www.wageningenacademic.com/doi/10.3920/BM2014.0108

Lactobacillus Helveticus:
47. https://www.ncbi.nlm.nih.gov/pubmed/20974015
48. https://www.researchgate.net/publication/282244005_Administration_of_Lactobacillus_helveticus_NS8_improves_behavioral_cognitive_and_biochemical_aberrations_caused_by_chronic_restraint_stress

Lactobacillus Plantarum:
49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594053/
50. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419998/
51. https://www.researchgate.net/publication/304663353_Immunomodulatory_Effects_of_Lactobacillus_plantarum_Lp62_on_Intestinal_Epithelial_and_Mononuclear_Cells
52. https://www.ncbi.nlm.nih.gov/pubmed/25598393
53. https://www.ncbi.nlm.nih.gov/pubmed/26620542
54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882673/
55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936756/

Lactobacillus Reuteri:
56. https://www.nature.com/articles/ejcn2012126
57. https://www.ncbi.nlm.nih.gov/pubmed/22067612
58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5917019/
59. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1348-0421.2009.00154.x
60. https://www.ncbi.nlm.nih.gov/pubmed/25688886
61. https://www.nature.com/articles/ejcn2012126
62. https://www.ncbi.nlm.nih.gov/pubmed/25531996
63. https://www.ncbi.nlm.nih.gov/pubmed/15629974
64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813596/
65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219330/
66. https://www.omicsonline.org/open-access/beneficial-bacteria-stimulate-youthful-thyroid-gland-activity-2165-7904.1000220.php?aid=26919
67. https://www.ncbi.nlm.nih.gov/pubmed/19895848

Lactobacillus Rhamnosus:
68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155824/
69. https://www.ncbi.nlm.nih.gov/pubmed/24299712
70. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239510/
71. https://www.ncbi.nlm.nih.gov/pubmed/26365389
72. https://www.ncbi.nlm.nih.gov/pubmed/21899584
73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844131/
74. https://www.ncbi.nlm.nih.gov/pubmed/22692023
75. https://www.ncbi.nlm.nih.gov/pubmed/22552453
76. https://www.ncbi.nlm.nih.gov/pubmed/27596801
77. https://www.ncbi.nlm.nih.gov/pubmed/23957340
78. https://www.ncbi.nlm.nih.gov/pubmed/22702506
79. https://www.ncbi.nlm.nih.gov/pubmed/26142892
80. https://www.ncbi.nlm.nih.gov/pubmed/23740456

Bifidobacterium bifidum:
81. https://www.ncbi.nlm.nih.gov/pubmed/27219886
82. https://www.ncbi.nlm.nih.gov/pubmed/27681077
83. https://www.ncbi.nlm.nih.gov/pubmed/28786012
84. https://www.ncbi.nlm.nih.gov/pubmed/28326881
85. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305430/
86. https://www.ncbi.nlm.nih.gov/pubmed/27209439
87. https://www.ncbi.nlm.nih.gov/pubmed/25604727
88. https://www.ncbi.nlm.nih.gov/pubmed/17878180
89. https://www.ncbi.nlm.nih.gov/pubmed/25909149
90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133134/
91. https://www.ncbi.nlm.nih.gov/pubmed/22205338
92. https://www.ncbi.nlm.nih.gov/pubmed/25648808
93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570661/
94. https://www.ncbi.nlm.nih.gov/pubmed/25244414
95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630703/
96. https://www.ncbi.nlm.nih.gov/pubmed/15829425
97. https://www.ncbi.nlm.nih.gov/pubmed/27623957
98. https://www.ncbi.nlm.nih.gov/pubmed/1597660
99. https://www.ncbi.nlm.nih.gov/pubmed/21418261
100. https://www.ncbi.nlm.nih.gov/pubmed/18785988
101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874795/

Bifidobacterium Breve:
102. https://www.ncbi.nlm.nih.gov/pubmed/15491374
103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1720633/
104. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048518/
105. https://www.ncbi.nlm.nih.gov/pubmed/12598719
106. https://www.ncbi.nlm.nih.gov/pubmed/16819382
107. https://www.ncbi.nlm.nih.gov/pubmed/27590263
108. https://www.ncbi.nlm.nih.gov/pubmed/15269618
109. https://academic.oup.com/ajcn/article/93/1/81/4597712
110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084046/
111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034291/
112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965514/

Bifidobacterium Coagulans:
113. https://www.ncbi.nlm.nih.gov/pubmed/25079465
114. https://www.ncbi.nlm.nih.gov/pubmed/24271261
115. https://www.ncbi.nlm.nih.gov/pubmed/2079358
116. https://www.ncbi.nlm.nih.gov/pubmed/2086441
117. https://www.ncbi.nlm.nih.gov/pubmed/23786900
118. https://www.ncbi.nlm.nih.gov/pubmed/26430929
119. https://www.ncbi.nlm.nih.gov/pubmed/24706266
120. https://www.ncbi.nlm.nih.gov/pubmed/25196301
121. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826289/
122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947834/
123. https://www.ncbi.nlm.nih.gov/pubmed/25219857
124. https://academic.oup.com/jn/article/145/7/1446/4589930
125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784472/
126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285933/
127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443394/
128. https://www.tandfonline.com/doi/full/10.1080/09168451.2014.972331
129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724383/
130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4769834/
131. https://www.ncbi.nlm.nih.gov/pubmed/20140275
132. https://www.ncbi.nlm.nih.gov/pubmed/19332970
133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129566/
134. https://www.ncbi.nlm.nih.gov/pubmed/24867512
135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460128/

Bifidobacterium infantis:
136. https://www.nature.com/articles/pr2004591
137. https://academic.oup.com/femspd/article/66/3/353/577227
138. https://www.ncbi.nlm.nih.gov/pubmed/23192454
139. https://www.ncbi.nlm.nih.gov/pubmed/20460726
140. https://www.ncbi.nlm.nih.gov/pubmed/17189085
141. https://gut.bmj.com/content/61/3/354
142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
143. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744517/
144. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774839/
145. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0#tab2
146. https://www.ncbi.nlm.nih.gov/pubmed/17893165
147. https://www.ncbi.nlm.nih.gov/pubmed/19291170
148. https://academic.oup.com/femspd/article/55/3/324/496928
149. https://www.ncbi.nlm.nih.gov/pubmed/17259812
150. https://www.ncbi.nlm.nih.gov/pubmed/16689181
151. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997396/
152. https://www.ncbi.nlm.nih.gov/pubmed/19367213
153. https://www.ncbi.nlm.nih.gov/pubmed/16863564
154. https://www.ncbi.nlm.nih.gov/pubmed/26418574
155. https://www.ncbi.nlm.nih.gov/pubmed/25794930

Bifidobacterium Lactis (Note: was called “Bifidobacterium animalis in older studies”):
156. https://www.sciencedirect.com/science/article/abs/pii/S089990071500461X?via%3Dihub
157. https://www.nature.com/articles/pr2008218?proof=true&draft=journal
158. https://www.ncbi.nlm.nih.gov/pubmed/18801055
159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265429/
160. https://www.ncbi.nlm.nih.gov/pubmed/16794305
161. https://www.ncbi.nlm.nih.gov/pubmed/19236549
162. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171707/
163. https://www.ncbi.nlm.nih.gov/pubmed/26268077
164. https://www.ncbi.nlm.nih.gov/pubmed/19622191
165. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877827/
166. https://www.ncbi.nlm.nih.gov/pubmed/15076628
167. https://www.ncbi.nlm.nih.gov/pubmed/25599772
168. https://www.ncbi.nlm.nih.gov/pubmed/15815206
169. https://www.ncbi.nlm.nih.gov/pubmed/24322191
170. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761588/
171. https://www.ncbi.nlm.nih.gov/pubmed/22284965
172. https://www.ncbi.nlm.nih.gov/pubmed/17635382
173. https://www.ncbi.nlm.nih.gov/pubmed/18801055

Bifidobacterium Longum:
174. https://www.ncbi.nlm.nih.gov/pubmed/15347767
175. https://www.ncbi.nlm.nih.gov/pubmed/23192454
176. https://academic.oup.com/femspd/article/66/3/353/577227
177. https://www.ncbi.nlm.nih.gov/pubmed/22052061
178. https://www.ncbi.nlm.nih.gov/pubmed/20460726
178. https://jmm.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.47306-0
180. https://www.ncbi.nlm.nih.gov/pubmed/19291170
181. https://www.ncbi.nlm.nih.gov/pubmed/17259812
182. https://www.ncbi.nlm.nih.gov/pubmed/24774670
183. https://www.ncbi.nlm.nih.gov/pubmed/12906063
184. https://www.ncbi.nlm.nih.gov/pubmed/16863564
185. https://www.ncbi.nlm.nih.gov/pubmed/19367213

Bacillus Subtilis:
186. https://www.ncbi.nlm.nih.gov/pubmed/23328284
187. https://www.microbiologyresearch.org/content/journal/jmmcr/10.1099/jmmcr.0.004036
188. DOI: https://doi.org/10.1016/j.celrep.2019.12.078

Saccharomyces Boulardii:
189. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296087/
190. https://www.ncbi.nlm.nih.gov/pubmed/25653151
191. https://www.ncbi.nlm.nih.gov/pubmed/15858959
192. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4125647/
193. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829915/
194. https://www.ncbi.nlm.nih.gov/pubmed/21997865
195. https://www.ncbi.nlm.nih.gov/pubmed/18256417
196. https://www.ncbi.nlm.nih.gov/pubmed/17306006
197. https://www.ncbi.nlm.nih.gov/pubmed/27283364
198. https://www.ncbi.nlm.nih.gov/pubmed/22476321
199. https://www.ncbi.nlm.nih.gov/pubmed/22335323
200. https://www.ncbi.nlm.nih.gov/pubmed/26216624
201. https://www.ncbi.nlm.nih.gov/pubmed/7872284
202. https://www.ncbi.nlm.nih.gov/pubmed/24311316
203. https://www.ncbi.nlm.nih.gov/pubmed/15740542
204. https://www.ncbi.nlm.nih.gov/pubmed/16572062
205. https://www.ncbi.nlm.nih.gov/pubmed/15357564
206. https://www.ncbi.nlm.nih.gov/pubmed/2494098
207. https://www.ncbi.nlm.nih.gov/pubmed/7872284
208. https://www.frontiersin.org/articles/10.3389/fnagi.2016.00256/full

Saffron:
209: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599112/
210: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643654/
211. https://www.ncbi.nlm.nih.gov/pubmed/27595298
212. https://www.ncbi.nlm.nih.gov/pubmed/15707766
213. https://obgyn.onlinelibrary.wiley.com/doi/full/10.1111/j.1471-0528.2007.01652.x
214. https://www.ncbi.nlm.nih.gov/pubmed/19720342
215. https://www.ncbi.nlm.nih.gov/pubmed/20831681
216. https://www.ncbi.nlm.nih.gov/pubmed/19838862
217. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941716/
218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850693/
219. https://www.ncbi.nlm.nih.gov/pubmed/20688744
220. https://www.ncbi.nlm.nih.gov/pubmed/30343354

Inubio™ Prebiotic Ingredients—Inulin, Chicory Root & Jerusalem Artichoke:
221. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686634/
222. https://www.ncbi.nlm.nih.gov/pubmed/28596023?dopt=Abstract
223. ttps://academic.oup.com/jn/search-results?f_TocHeadingTitle=Inulin%20and%20Oligofructose:%20Health%20Benefits%20and%20Claims-A%20Critical%20Review
224. https://academic.oup.com/jn/article/137/11/2524S/4664499
225. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705355/
226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896694/
227. https://www.ncbi.nlm.nih.gov/pubmed/24688953
228. https://www.ncbi.nlm.nih.gov/pubmed/18853230
229. https://www.ncbi.nlm.nih.gov/pubmed/27623982
230. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041804/